

UNDERSTAND A **circle** is the set of all points that are the same distance from a point called the center. Visualize turning the circle shown on the right so that point *A* moves onto point *B*. If you did that, the points would remain the same distance from the center, but they would each be in a different location.

A **rotation** is a transformation that turns a figure around a point, called the **center of rotation**. Just as with points on a circle, when you rotate a point around a center of rotation, it remains the same distance from the center of rotation. You can rotate a figure any number of degrees.

Counterclockwise is considered the positive direction, so the rotation shown on the right would be described as -45° rotation around the origin. The same image could be obtained, however, by rotating the figure 315° clockwise, since 360 - 45 = 315. So, this rotation could also be called a 315° rotation around the origin.

You can represent a rotation as a function for which the input is a coordinate pair. The output of that function is the image produced by the rotation.

A 90° rotation is equivalent to a -270° rotation and has this function:

$$R_{90^{\circ}}(x, y) = (-y, x)$$

A 180° rotation is equivalent to a -180° rotation and has this function:

 $R_{180^{\circ}}(x, y) = (-x, -y)$

A 270° rotation is equivalent to a -90° rotation and has this function:

 $R_{270^{\circ}}(x, y) = (y, -x)$

Compare the preimage on the right and its image after a 90° rotation or a 270° rotation. Notice that the hypotenuse of each of these images is perpendicular to the hypotenuse of the preimage. Corresponding sides of a figure and its image after a 90° or 270° rotation lie on perpendicular lines.

Now compare the preimage and its image after a 180° rotation. Notice that the hypotenuse of the image is parallel to the hypotenuse of the preimage. Corresponding sides of a figure and its image after a 180° rotation always lie on parallel lines or on the same line.

Connect

Triangle *GHJ* is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of 90° , 180° , and 270° about the origin.

1 Apply the functions for the given counterclockwise rotations to the vertices of the triangle. The vertices of $\triangle GHJ$ are G(1, 2), H(4, 6), and J(5, 2). The function that represents a 90° rotation around the origin is $R_{q_0}(x, y) = (-y, x).$ $R_{00}(1, 2) = (-2, 1)$ $R_{00}(4, 6) = (-6, 4)$ $R_{000}(5, 2) = (-2, 5)$ The function that represents a 180° rotation around the origin is $R_{180^{\circ}}(x, y) = (-x, -y).$ $R_{180^{\circ}}(1, 2) = (-1, -2)$ $R_{180^{\circ}}(4, 6) = (-4, -6)$ $R_{180^{\circ}}(5, 2) = (-5, -2)$ The function that represents a 270° rotation around the origin is $R_{270^{\circ}}(x, y) = (y, -x).$ $R_{270^{\circ}}(1, 2) = (2, -1)$ $R_{270^{\circ}}(4, 6) = (6, -4)$ $R_{270^{\circ}}(5, 2) = (2, -5)$

Identify the coordinates of the vertices of the images if the rotations had been in a clockwise direction. Graph and label each image.

2

Plot the vertices of each image, label them, and connect them.

TRY

EXAMPLE A Quadrilateral *STUV* is graphed on the coordinate plane. Transform quadrilateral *STUV* using this function:

$$R_{\theta}(x, y) = (-y, x)$$

Identify the degree measure of the rotation that the function performs. (Note: The Greek letter theta (θ) is often used to represent unknown angle measures.)

EXAMPLE B Triangle *BCD* was rotated to form its image, triangle B'C'D'. Identify the transformation and write a function to describe it.

2

TRY

Identify the coordinates of the vertices of both triangles.

The vertices of the preimage, $\triangle BCD$, are B(-2, -5), C(3, -1), and D(6, -3).

The vertices of the image, $\triangle B'C'D'$, are B'(-5, 2), C'(-1, -3), and D'(-3, -6).

Use the function for a 270° rotation to confirm your guess.

The function for a 270° rotation is $R_{270^{\circ}}(x, y) = (y, -x)$. Apply this function to the vertices of $\triangle BCD$.

 $R_{270^{\circ}}(-2, -5) = (-5, 2)$ This is B'.

 $R_{270^{\circ}}(3, -1) = (-1, -3)$ This is C'.

 $R_{270^{\circ}}(6, -3) = (-3, -6)$ This is D'.

Each point (x, y) on $\triangle BCD$ has a corresponding point (y, -x) on its image, so $\triangle B'C'D'$ is the result of a 270° rotation.

The transformation is a 270° rotation, which can be represented by the function $R_{270^{\circ}}(x, y) = (y, -x)$. Compare the triangles visually to identify the transformation.

From eyeballing the figures, it looks like $\triangle BCD$ was turned about $\frac{1}{4}$ clockwise around the origin to form $\triangle B'C'D'$. That is a -90° rotation, which is the same as a 270° rotation.

Identify and write a function to describe the rotation needed to move $\triangle B'C'D'$ back onto $\triangle BCD$. How does this notation compare to the notation for the 270° rotation?

1

3

Practice

Identify the number of degrees (45° , 90° , 180° , or 270°) by which each quadrilateral *ABCD* has been rotated about the origin to form its image.

REMEMBER A -90° rotation is equal to a 270° rotation.

Describe how $\triangle DEF$ was rotated to form $\triangle D'E'F'$ both in words and in function notation.

Write true or false for each statement. If false, rewrite the statement to make it true.

- 5. A circle is the set of all points that are equidistant from a point called the center.
- **6.** A quarter-turn in the counterclockwise direction is equivalent to a -90° rotation.
- 7. Corresponding sides of a preimage and an image after a 270° rotation are parallel.

Use the given function to rotate $\triangle KLM$ to form $\triangle K'L'M'$. Identify the coordinates of the vertices of the image. Then identify the degree measure of the rotation.

Solve.

Duplicating this page is prohibited by law. © 2015 Triumph Learning, LLC

10. **EXPLAIN** Sal drew a rectangle on a coordinate plane. He then rotated it 90° as shown below. Is there another way he could have rotated the rectangle that would have yielded the same image? Explain your reasoning.

11. DRAW An artist drew a blue and white trapezoid on a computer. She wants to copy and rotate this image three times about the origin to create a figure that looks like a pinwheel. Describe three rotations she could use. Draw the pinwheel that would result from those three rotations.

