Rotations

UNDERSTAND A circle is the set of all points that are the same distance from a point called the center. Visualize turning the circle shown on the right so that point A moves onto point B. If you did that, the points would remain the same distance from the center, but they would each be in a different location.

A rotation is a transformation that turns a figure around a point, called the center of rotation. Just as with points on a circle, when you rotate a
 point around a center of rotation, it remains the same distance from the center of rotation. You can rotate a figure any number of degrees.

Counterclockwise is considered the positive direction, so the rotation shown on the right would be described as -45° rotation around the origin. The same image could be obtained, however, by rotating the figure 315° clockwise, since $360-45=315$. So, this rotation could also be called a 315° rotation around the origin.

You can represent a rotation as a function for which the input is a coordinate pair. The output of that function is the image produced by the rotation.

A 90° rotation is equivalent to a -270° rotation and has this function:

$$
R_{90^{\circ}}(x, y)=(-y, x)
$$

A 180° rotation is equivalent to a -180° rotation and has this function:

$$
R_{180^{0}}(x, y)=(-x,-y)
$$

A 270° rotation is equivalent to a -90° rotation and has this function:

$$
R_{270^{\circ}}(x, y)=(y,-x)
$$

Compare the preimage on the right and its image after a 90° rotation or a 270° rotation. Notice that the hypotenuse of each of these images is perpendicular to the hypotenuse of the preimage. Corresponding sides of a figure and its image after a 90° or 270° rotation lie on perpendicular lines.

Now compare the preimage and its image after a 180° rotation. Notice that the hypotenuse of the image is parallel to the hypotenuse of the preimage. Corresponding sides of a figure and its image after a 180° rotation always lie on parallel lines or on the same line.

E Connect

Triangle GHJ is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of $90^{\circ}, 180^{\circ}$, and 270° about the origin.

Apply the functions for the given counterclockwise rotations to the vertices of the triangle.

The vertices of $\triangle G H J$ are $G(1,2), H(4,6)$, and $J(5,2)$.

The function that represents a 90° rotation around the origin is $R_{90^{\circ}}(x, y)=(-y, x)$.

$$
\begin{aligned}
& R_{90^{\circ}}(1,2)=(-2,1) \\
& R_{90^{\circ}}(4,6)=(-6,4) \\
& R_{90^{\circ}}(5,2)=(-2,5)
\end{aligned}
$$

The function that represents a 180° rotation around the origin is $R_{180^{\circ}}(x, y)=(-x,-y)$.

$$
\begin{aligned}
& R_{180^{\circ}}(1,2)=(-1,-2) \\
& R_{180^{\circ}}(4,6)=(-4,-6) \\
& R_{180^{\circ}}(5,2)=(-5,-2)
\end{aligned}
$$

The function that represents a 270° rotation around the origin is $R_{270^{\circ}}(x, y)=(y,-x)$.
$R_{270^{\circ}}(1,2)=(2,-1)$
$R_{270}(4,6)=(6,-4)$
$R_{270^{\circ}}(5,2)=(2,-5)$
2

Graph and label each image.

Plot the vertices of each image, label them, and connect them.

EXAMPLE A Quadrilateral STUV is graphed on the coordinate plane. Transform quadrilateral STUV using this function:

$$
R_{\theta}(x, y)=(-y, x)
$$

Identify the degree measure of the rotation that the function performs. (Note: The Greek letter theta (θ) is often used to represent unknown angle measures.)

1
Identify the coordinates of the vertices of quadrilateral STUV.

The figure has vertices $S(-2,1), T(1,5)$, $U(3,5)$, and $V(4,-1)$.

Graph the rotated image and identify the transformation. Check your answer visually.

Eyeballing the graph confirms that this is a 90° rotation.
$S^{\prime} T^{\prime} U^{\prime} V^{\prime}$ is the result of a 90° rotation.

2
Identify the coordinates of the rotated image and the degree measure of the rotation.

$$
\begin{aligned}
& R_{\theta}(x, y)=(-y, x), \text { so: } \\
& S(-2,1) \longrightarrow S^{\prime}(-1,-2) \\
& T(1,5) \longrightarrow T^{\prime}(-5,1) \\
& U(3,5) \longrightarrow U^{\prime}(-5,3) \\
& V(4,-1) \longrightarrow V^{\prime}(1,4)
\end{aligned}
$$

When the opposite value of y is taken and the values of x and $-y$ are switched, this indicates a 90° rotation.

EXAMPLE B Triangle $B C D$ was rotated to form its image, triangle $B^{\prime} C^{\prime} D^{\prime}$. Identify the transformation and write a function to describe it.

1
Identify the coordinates of the vertices of both triangles.

The vertices of the preimage, $\triangle B C D$, are $B(-2,-5), C(3,-1)$, and $D(6,-3)$.
The vertices of the image, $\triangle B^{\prime} C^{\prime} D^{\prime}$, are $B^{\prime}(-5,2), C^{\prime}(-1,-3)$, and $D^{\prime}(-3,-6)$.

3
Use the function for a 270° rotation to confirm your guess.

The function for a 270° rotation is $R_{270^{\circ}}(x, y)=(y,-x)$. Apply this function to the vertices of $\triangle B C D$.
$R_{270^{\circ}}(-2,-5)=(-5,2)$ This is B^{\prime}.
$R_{270^{\circ}}(3,-1)=(-1,-3)$ This is C^{\prime}.
$R_{270^{\circ}}(6,-3)=(-3,-6)$ This is D^{\prime}.
Each point (x, y) on $\triangle B C D$ has a corresponding point ($y,-x$) on its image, so $\triangle B^{\prime} C^{\prime} D^{\prime}$ is the result of a 270° rotation.

- The transformation is a 270° rotation, which can be represented by the function $R_{2700}(x, y)=(y,-x)$.

Identify and write a function to describe the rotation needed to move $\triangle B^{\prime} C^{\prime} D^{\prime}$ back onto $\triangle B C D$. How does this notation compare to the notation for the 270° rotation?

Practice

Identify the number of degrees $\left(45^{\circ}, 90^{\circ}, 180^{\circ}\right.$, or 270°) by which each quadrilateral $A B C D$ has been rotated about the origin to form its image.
1.

2.

> REMEMBER A -90° rotation is equal to a 270° rotation.

Describe how $\triangle D E F$ was rotated to form $\triangle D^{\prime} E^{\prime} F^{\prime}$ both in words and in function notation.
3.

Words: \qquad
Function: \qquad
4.

Words: \qquad
Function: \qquad

Write true or false for each statement. If false, rewrite the statement to make it true.
5. A circle is the set of all points that are equidistant from a point called the center.
\qquad
6. A quarter-turn in the counterclockwise direction is equivalent to a -90° rotation.
7. Corresponding sides of a preimage and an image after a 270° rotation are parallel.

Use the given function to rotate $\triangle K L M$ to form $\triangle K^{\prime} L^{\prime} M^{\prime}$. Identify the coordinates of the vertices of the image. Then identify the degree measure of the rotation.
8. $R_{\theta}(x, y)=(-x,-y)$

\qquad
9. $R_{\theta}(x, y)=(-y, x)$

\qquad
$K^{\prime}\left(_, \ldots\right) L^{\prime}\left(_, \ldots\right) M^{\prime}\left(_, \ldots\right)$
\qquad
11. DRAW An artist drew a blue and white trapezoid on a computer. She wants to copy and rotate this image three times about the origin to create a figure that looks like a pinwheel. Describe three rotations she could use. Draw the pinwheel that would result from those three rotations.

\qquad

